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Abstract

This paper constructs a three-dimensional (3D) route choice model based on an adjusted RL model
and observation model. In order to reproduce the pedestrian trajectory in the 3D space with precision,
we designed an observation model using machine learning algorithms and proposed a Data Fusion (DF)
based location strategy by integrating classifiers trained from multi-sensor data set to address with signal
attenuation issue caused by the environment and access point (AP) distribution. In addition, the Recur-
sive Logit (RL) model is utilized to build a route choice model on a choice-stage network (CSN). Since
the output of the observation model is a link set in the form of probability, we introduce cross-entropy
instead of the likelihood as the objective function for parameter estimation. A case study at Shibuya
Station shows that our model is practical in complex 3D spaces. Pedestrians’route preferences reflected
in the model can provide a reference for future research on pedestrian behavior modeling and network
optimization.
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1. INTRODUCTION 
With the rapid development of city areas, growing requirements involving urban design and transｭ
portation planning have increased expectations for accurate traffic information and modeling. 
While the research and application in road traffic networks have made many breakthroughs, the 
attention and exploration of the urban pedestrian network are still limited (1). There are many 
results of behavioral and network models in the study of automobile traffic and public transportaｭ
tion, and some of the results of Daganzo's logit model (2) and Sasaki's Markov model (3) may 
be applicable to the study of pedestrian traffic. However, there are some issues in applying these 
models. GPS data, which has paved the way for the analysis of automobile traffic, has limitations 
in its application to pedestrian traffic. It is challenging to observe movement inside buildings in 
a three-dimensional (3D) urban space. Although information from multiple sensors is available, 
there are examples of research by Hato (4) on how to combine them. Still, it is safe to say that 
there is a strong need for new models that incorporate machine learning results. And while the 
decision-making of pedestrians'path-choice behavior is sequential, with a high degree of freeｭ
dom, it is globally affected by spatio-temporal prism constraints (5, 6), so advanced models that 
take this into account are needed. In particular, the studies on pedestrian route choice behavior 
under a complicated scenario are not widely available. 
At the urban scale, the pedestrian network is denser and with higher resolution than the 

vehicle network. It sometimes takes on a 3-dimensional form (ex, in transport hubs and some 
pedestrian facilities). From the micro-view, pedestrians are faced with more frequent path selecｭ
tion and usually with more alternatives. All of the above characteristics lead to higher requirements 
for pedestrian location accuracy and computation of pedestrian modeling. For micro-scale pedesｭ
trian modeling, trajectory monitoring can be well achieved using video (7) and various sensors. 
Nevertheless, when it comes to an entire pedestrian network, such as in a city center district, a 
position solution that considers precision, scale, and cost remain to be discussed. 
In recent years, machine learning (ML) has a good performance in dealing with pattern 

identification problems on big data and has been widely applied in transportation (8-10). This 
research incorporates machine learning into pedestrians'location identification and constructs a 
pedestrian model on a 3-dimensional(3D) urban network basing on the location identification reｭ
sult. The overall framework of this study is shown in Fig. l. This study compares several ML 
approaches and their performance on both WiFi and GPS data set. On this basis, a data-fusionｭ
based location scheme, which takes into account both cost performance and precision, is proposed 
for better inference. In addition, we replace the log-likelihood function with a cross-entropy funcｭ
tion in parameter estimation and confirm the potential of recursive logit (RL) model (11) on a 
probabilistic link set. We apply the proposed framework to the actual sensor records collected in 
the Shibuya station area. The result shows that it can be an effective tool for the network design of 
a pedestrian network containing a 3D structure. The overall framework of this study is shown in 
Figure 1 
We organize the paper into six sections: Section 2 details a literature review. In Section 

3, we introduce the approaches applied to location identification. Section 4 presents a parameter 
estimation method using a probabilistic link set. Section 5 describes a case study basing on a 
survey conducted in the Shibuya station area, and Section 6 analyzes the result with a conclusion. 
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FIGURE 1 Framework of Model Systems 

2. REVIEW 

2.1 Observation methods 

2.1.1 sensor measurement 

Given the nature of pedestrian network: high density and diverse branches, accurate and costｭ

effective positioning technique is essential for establishing effective pedestrian models. Therefore, 

compared with traditional data collection methodologies such as self-report and stated preference 

surveys, sensor techniques include Global Positioning System (GPS) traces, Light Detection and 

Ranging (LiDAR) sensing, Wi-Fi, RFID, Bluetooth sensors, and cameras are more suitable for 

pedestrian route measurement (1, 12—17). On the other hand, given their current cover rate in 
pedestrian infrastructures, the use of high-precision sensors, such as cameras, usually leads to a 

tradeoff between accuracy and coverage, not to mention the restrictions due to privacy issues (13). 

Considering the above content and the popularization of smartphones, there is a broad application 

of GPS and Wi-Fi probes in research and application for the low cost, availability, operability, and 

globally unified standard (1, 13, 15, 18). 

The GPS-enabled smartphones are typically accurate to within a 5 meters radius on a wide 
street. However, compared to its success in open space, GPS signal can be vulnerable to jamming 

or even wholly blocked under a complicated street environment condition, which leads to meaｭ

surement error and accuracy deterioration (1, 12, 13). On the other hand, the Wi-Fi probe shows 

an exemplary detection performance on indoor spaces, but the reliability relies on the pre-existing 

infrastructures and pre-survey on access points (APs) location (15). 

2.1.2 data fusion and map matching 

To improve positioning performance on the entire network, Data Fusion (DF), a collection of techｭ

niques that combine multiple sources to achieve better accuracy, can be applied (8, 19). Another 

common position technique is Map matching (MM), which matches the serial geographic coor-
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dinates to transportation networks. Many researchers have utilized one or both to contribute to 
location identification. 1988, Krakiwsky et al. (20) developed a Kalman filter to integrate dead 
reckoning, MM, and GPS, which can estimate the state of a dynamic system from a series of meaｭ
surement data containing statistical noise and other inaccuracies with the measurement bias caused 
by signal blocking. Recently, Danalet et al. (13) incorporate the Bayesian approach to merge the 
prior information of the potential activity-episode location to make up for the scarce data. Focusｭ
ing on the fact that the spatial characteristics within a link tend to be uniform, Oyama and Hato 
(1) introduced a link-based route measurement model and proposed a framework that sequentially 
determines the links. 
Traditionally, the MM  process is unidirectional (solid line connection); in other words, it 

does not have any effect on DF; whereas, MM  can be bidirectional (both solid and dashed line 
connection) for the map can be regarded as an information source and calibrate DF (19). In this 
research, we use a DP-based location scheme, as shown in Figure 2 

’ Observation model 

GPS receiver 

Wi-Fi receiver 

Data 

Fusion 

Map 

Matching 
Digital road map 

ヽ' 
``—------------------------' t ___________ J 

connection indicator o 

FIGURE 2 a data-fusion-based location scheme 

2.2 Route choice modelling 
Like other choice problems in transportation fields, such as travel mode selection, the essence of 
route choice is choosing a specific route with a set of alternative routes (9). Most existing route 
choice models, such as C-Logit (21), Path Size Logit (22), and Logit mixture (23), deal with route 
choice behavior in deterministic networks, ignoring the dynamics of route choice behavior. Alｭ
though some previous studies have focused on route choice behaviors in a dynamic network, the 
alternative routes are path-based (24). In other words, these models are basing on the hypotheｭ
sis that travelers have a global spatial cognition over networks, which limits the applicable traffic 
scenarios and requires pre-sampling of paths. Sasaki (3) proposed an absorbing Markov chain 
model for traffic assignment, which first incorporates the link transition probability into the traffic 
assignment model and avoiding explicit path enumeration. Then, The Recursive Logit (RL) model 
proposed by Fosgerau et al. (25) introduces the Markov process into the route choice context, conｭ
structs a dynamic discrete choice framework to model route choice as a sequence of link choices. 
The RL model assumes the traveler always chooses the following link that maximizes the sum of 
the instantaneous utility and expected downstream utility at each state. 
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Researchers have proposed extensions to make the RL model framework work better in 
actual traffic scenarios: The Nested RL model (26), cross-nested (RCNL) model (27), and mixed 
recursive logit (MRL) model (28) relax the independence from irrelevant alternatives property of 
logit model, allowing for correlation structure among path alternatives. On the other hand, the 
DRL model (11) introduces a discount factor of expected future utility to generalize travelers' 
decision-making dynamics. In addition, Oyama and Hato (5, 6) incorporated the concept of prism 
constraints and choice-stage into the route choice model and develop traffic assignment on the 
choice-stage structured network (CSN). This extension excludes the unworkable routes for more 
efficient computation and minor requests for memory capacity, making the traffic flow assignment 
on a high-resolution network possible. 

2.3 Estimation approaches 
Several approaches have been proposed to estimate dynamic discrete choice models, most of which 
are two-step estimators, such as the nested fixed-point algorithm (NFXP), Conditional Choice 
Probability (CCP) estimator, and the nested pseudo-likelihood (NPL) algorithm. A review of esｭ
timators of dynamic discrete choice structural models can be found in Aguirregabiria and Mira's 
work (29). For maximum likelihood estimation of single-agent dynamic discrete choice model, 
Rust (30) presented NFXP, which consists of an outer BHHH optimization algorithm and an inner 
fixed-point algorithm; the implicit value function is solvable using backward induction in the inner 
loop when the model has a finite horizon. The NFXP model have already been used in the context 
of route choice modelling, e.g., recursive discrete route choice models (31). The main limitation of 
NFXP is its algorithmic complexity since it requires solving the dynamic programming (DP) probｭ
lem for each trial value. Hotz and miller (32) observed that the repeated solution of DP problem 
can be avoided and proposed the CCP estimator, which achieves a significant computational gain 
at the cost of efficiency. Like many other two-step estimators, CCP is not asymptotically efficient 
and has finite sample bias. As an extension of CCP estimator, the NPL algorithm (29) was proved 
to improve the asymtotic properties and reduce the finite sample bias significantly. 
On the other hand, Su and Judd (33) proposed a constrained optimization strategy for esｭ

timation, referred to as the mathematical programming with equilibrium constraints (MPEC) apｭ
proach. MPEC can be regarded as an alternative computational algorithm to NFXP for implementｭ
ing the same statistical estimator at a lower computational complexity. 

This paper aims to model pedestrian's route choice behavior in a 3D urban space. We take 
an FD location strategy that integrates the spatial information to check connection conditions in 
the pedestrian network and realize precise location identification. Basing on the location result, 
We adopt RL model on CSN for modeling and utilize the MPEC method to estimate the parameter 
vector. 

3. LOCATION IDENTIFICATION 
In this section, we propose a link-based observation model incorporating machine learning for 
location identification. 

3.1 Data structure 
In this study, we use two sensor sources for link detection: GPS and Wi-Fi. Let m =（ふ令） denote
a vector of measurements. The GPS measurements at time t, 兒＝ (~nt l~nn,X,,1,) G lat, lon, alt is a combination 
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of coordinates and altitude; while the Wi-Fi measurements at time t, えw= （叶，…， x~) is a vector 
of detected APs at time t (if the device can detect n-th AP at time t, then x~ = l, otherwise x~ = 0), 
N is the total number of APs in the entire network. 令＝ （m ．．，応） is a vector of measurement 
timestamp. The prediction results of both two types of data are in the form of a vector yt = 

((az,p(az I xi)),..., (az,,p(al'I 点）t)), containing the class label (link ID) az E Az and posterior 
probability of putting the input data Xt. The data set for training the model contains feature array x 

and link answer y, we define it as Z = (x1,Y1),..., (xn,Yn),..., (x兄 YN).

3.2 Machine learning methods 
Machine learning is a powerful method that automatically analyzes data to obtain patterns and 
uses statistical patterns to generate a high-quality prediction for unknown data. Machine learning 
models can be divided roughly into two types: supervised learning and unsupervised learning. The 
former learn underlying distribution laws of the pre-labeled objects to produce an output, while 
the latter find the natural grouping from unlabeled data (8). This study uses supervised learning 
algorithms to build a 3D position observation model, which is essentially a multi-classification 
model. To determine the classifier that can provide the most accurate prediction, we adopted the 
following four classifiers and compared them in terms of accuracy and efficiency on both GPS and 
W-Fi data sets. 

Random forest 
Random forest (RF) was developed by Breiman (34) from his bagging idea. RF is an ensemble 
classification and regression method based on tree-like structures (decision tree) at the training 
level. The RF classifier applies a "majority voting" mechanism to combine each tree's classification 
results. 

Neural network 
Neural Network (NN) is a mathematical model that imitates the systems of neurons to recognize 
underlying relationships in a data set. The artificial neurons form the network through the conｭ
nections of synapses. The strength or 皿plitude of a connection (also called synaptic weight) 
changes while training, lead to a different level of trigger with each synapse and thus realizing the 
classification and regression of input data. 

XGBoost and LightGBM 
Extreme Gradient Boosting (XGBoost), developed by Chen (35), is one of the gradient boosting 
(GB) algorithms that combining decision tree and boosting method. LightGBM (36), another GB 
algorithm, splits the tree leaf-wise with the best fit while XGBoost split the tree level-wise. The 
leaf-wise algorithm can reduce more loss than the level-wise algorithm and achieve better accuracy 
in a short training procedure. 

3.3 Data fusion 
Since the single sensor positioning is prone to contain measurement errors and loss signals in a 
complex urban pedestrian networks, we decided to adopt a OF-based location scheme based on 
the spatial relationship between links to improve the overall accuracy. Refering to Oyama's linkｭ
based measurement model (1), we first decompose the time sequence (1,..., t..., T) into some 
time periods, and the interval 凶 is unchangeable for all time periods. Therefore, the sequence 
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FIGURE 3 A Data Fusion Strategy Incorporating Network Information 

of prediction results for a trip fiz is decomposed as （炉，．．．，見．．．，紅）．We choose the data with 
higher overall accuracy as base data. At each period, use the vector y predicted from the base data 
as the initial prediction, and regard the link with the highest probability p(ak I 咋） = max(p(a1 I 
叫• • •,p(an I x!i), • • •,p(aN I 吹）） as the initial link ak, and then use the adjacent link set as an 
indicator to check and replace the initial link. We set connection indicator 8 (a'I a) = 1 when a 
and a'are spatially connected, otherwise 8 (a'I a) = 0. The adjacent link set of link a is A'(a) = 
(a~,..., a~), 8 (a'I a) = 1 for all a'EA'. if an initial link ar is not connected to its'upstream or 
downstream link, and the alternative link aい，wereplace aて with a~. Figure3 is an example of DF 
when Wi-Fi data serves as the base data. The solid links on map represents the initial prediction 
and the dashed link a; represents the replaced prediction. 
Generally speaking, link-based measurement models tend to have difficulties in link conｭ

nection due to their myopic optimization, and the predicted result deviates from the correct path 
with the error accumulates. In contrast, the fusion scheme we propose can avoid this problem since 
it is a local optimization strategy. However, it requires a reliable initial prediction and a reasonable 
time interval • t. 

4. PARAMETER ESTIMATION 
4.1 Choice-stage structured network 
We construct the route choice model on a choice-stage structured network (CSN) and adopt the 
definition of CSN in Oyama and Hato's paper (6). Let G = (S,E) donate a CSN, where S = 
[So,...,St,...,S刀 is the array of state sets which contains state s1 = (t,a), a EA, A is the set of 
all links of the network; and E = [E。,．．．， E1,...,Er-1] is the array of edge sets with entries of 
edge E1 = (s1,s1+1), t E [0,T]. Therefore, a route on a CSN can be described as a sequence of 
states [so,..., sぃ...,sr]. Since the state contains both space and time information, state s1 # st', for 
t # t'. In other words, an individual has different states at a different time in a CSN, even if the 
positions in space are the same. This property of CSN can help us to remove cyclic structures from 
the network, with the spatial cycles remain. 

Then we set initial state so = (0, o) and final state sr = (T, d), o and d are the origin and 
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destination links in A, respectively. Tis the time constraint, a key parameter of the CSN, which 

restrict the stages set St through the following mechanism: For any state St = (t, a), if an individual 
can't reach a from o within time t, nor reach d from a within time T -t, the state existence 
indicator It (a) = 0, otherwise It (a) = 1. In addition, we set connection indicator 8 (a'I a) = 1 
when a and a'are spatially connected, otherwise 8 (a'I a) = 0. Thus, the state connection indicator 

is given as • (a'I a) = It (a) 8 (a'I a)It+ 1 (a'). This procedure can remove unused states, as well as 
forming a prism to constrain travelers'route choices. 

4.2 Recursive logit model 

We denoteA(a1) as the set of outgoing links at link a1 EA, i.e., for any link a EA(a1), 8(a I a1) = l. 
Assume that an individual at state St= (t,at) always moves to the next state St+l = (t + l,aJ+i), 
a}+1 E A(a1), which maximizes the sum of instantaneous utility u(a}+l I a1) and the expected 
downstream utility to destination link d, yd (a J+ 1). The value function yd (a j) can be expressed by 
using Bellman equation: 

v氾）＝ E [a}十官闊り）｛u(a}+l I a五 0) ＋戸（aJ+1) ｝]

孔悶町）｛v(a}+1 I a()+ vd(aj+1) + µE(aj+1) }] 
Using MNL model, the transition probability from state St to state St+l can be expressed as: 

砂{v(aj+! laj)+V(aj+1)} 

(1) 

p(aj+1 I aj) = 
と砂{v(aJ+l laj)+V(aj+ln 

aJ+l鑓(aり

and the route choice probability for router= [so,...,st,...,sr] = [(O,o),..., (t,aj),..., (T,d)] is: 
T-1 ln-1 

p(r) = n p(st+l I St)= n p(st+l I St) 
t=l j=l 

Since error term ｣ obeys Gumbel distribution, the value function V伍） Eq.(l) can also be deｭ
scribed as: 

v他）＝｛ µlna];;EA• (aj+l I a)e託(aJ+1 切）＋四（aJ+1) ｝， (t# Tua #d) 
0, (t = TU a = d) 

Because there are no cycles in CSN, we can directly solve the value function from t = T, using 
backward induction. 

(2) 

(3) 

(4) 

4.3 Minimum cross-entropy estimation 
Maximum likelihood (MLE) is a well-used parameter estimation method for route choice models. 
However, in this study, we adopt minimum cross-entropy (CE) estimation instead of MLE since 
the routes inferred by the observation model are in the probabilistic form, consisting of a sequence 
of vectors of link ID and the corresponding probability. We define the CE function of the vector of 
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parameters e as follow: 
N ln-1 

CE(e) = -L L Pn(aj)Inpn(aj+l I a() 
n=l j=l 
N ln-1 

=-E E 
1 -L L ~Pn(aj)(vn(aj+l I aj; e) + v;ヽ (aj+1) -Vヽ (a1)) (5) 

n=1 j=1ｵ 
Where N is the number of routes, In is the number of links included in route rn, Pn(a) is the link 
existence probability inferred from the observation model. Eq.(5) shows that the link transition 
probability p includes an endogenous variable, and the solution requires computation of the fixed 
pointVd inEq.(l). Aswedi . As we discussed in the review section, there are several estimators for dynamic 
discrete choice models, such as the NFXP algorithm (30), the NPL algorithm (29), and the MPEC 
approach (33). In this case, we adopt MPEC algorithm. 

5. CASE STUDY 
5.1 Data collection and network setting 
In this study, we use sensor data collected in 2017 on Shibuya station and the surrounding area 
with a radius of 1 km. The study focused on 40 volunteers, aged 18 to 68, with a 1: 1 gender ratio, 
who lived in the Greater Tokyo Area (Tokyo, Kanagawa, Chiba, and Saitama) and walked through 
Shibuya station least twice a week. All the volunteers were required to install an application and 
turn it on for data collection while participating in the following two experiments from March 16th, 
2017, to April 12th, 2017. 
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FIGURE 4 Indoor and Outdoor Links in Shibuya 3D Pedestrian Network 

The Experiment I asked the volunteers to walk through every single link on the pedestrian 
network of the survey area, and the recorded data serve as teaching data for location identification. 
Then, in the Experiment2, volunteers can walk freely between the appointed origin and destination 
within a limited time. The observation result of their route choice behavior is used for pedestrian 
modeling. 
Referring to the GPS coordinates collected in experiment 1, we choose a pedestrian netｭ

work within a radius of 500 meters around Shibuya Station as the study object. The network covers 
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the roads and passageways within Shibuya station and buildings (Shibuya Mark City, Tokyu Deｭ

partment Store, and Shibuya Hikarie) connected to it, with a maximum of 4 floors above ground 

and a minimum of 3 floors underground. Although the authentic pedestrian network is composed 
of directed links, since neither the GPS features nor Wi-Fi features we use for link prediction can 

reflect the walking direction, we simplify it to an undirected network G = (N,A), where N is the 
set of nodes and A is the set of links. 
In building a data set, we assume that the participants always walk at a constant speed 

and proportion the travel time between two adjacent stamped locations to the links between them 
according to the link length. This way, we can determine participants'position at each observation 
time point and label the complete link data with link classes. As a result, we obtained 175 link 

classes. From the observation data collected in Experiment2, we kept the part within the network 

G, and add 10 more links that might constitute the shortest path to complete the network. Thus, 

the urban pedestrian network we constructed in this research is G'= (N',A'), A'= (a1,a2, …,a1), 
where J = 185. The link distribution is shown in Figure 4. 
We screened out outliers in each category(links) by examining velocity and acceleration to 

reduce inaccuracies and measurement errors in GPS traces. In addition, Smote (37), a synthetic 
minority over-sampling technique, is introduced to reduce sampling bias by generating pseudo 

instances based on the neighborhood. After screening out the problem data, we obtain a data set 
for machine learning and observation data for parameter estimation, as shown in Table 1. 

TABLE 1 Data Summary 

Experiment I Experiment2 
Data Source Training data Test data Observation data Features 
Indoor 5434 1291 

GPS Outdoor 5662 1377 3 
Overall 11096 2668 12190 
Indoor 12660 3193 

Wi-Fi Outdoor 5441 1332 8958 
Overall 18101 4525 33142 

5.2 Prediction result of 3D position observation model 
In the training stage, we put training data into learners constructed using machine learning models, 
including Random Forest, Neural Network, XGBoost, and LightGBM, and did 10-Fold crossｭ

validation for parameter tuning. Since the output of each learner is a probability distribution of the 

link set, we apply cross-entropy loss as the loss function. 
The link with the highest probability is regarded as the final answer and used for calculating 

model accuracy. The prediction and cross-validation results of each method are shown in Table 2. 
All the applied classifiers work well on the Wi-Fi data, reaching over 95% test accuracy, while the 

test accuracy of the GPS data set is basically around 89%. Moreover, the neural network classifier 

cannot obtain an ideal classification result on GPS data set. That might occur due to the low 
dimensional data (3 features) and large category (175 classes), which decide the number of nodes 
in the input and output layers, respectively. 

As we discussed in Section 2, based on the positioning principle and data characteristics, 
both GPS and Wi-Fi positioning have their drawbacks; the former is affected by the building 
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structure and lacks credibility inside the building and when underground; the positioning accuracy 
of the latter relies on the distribution of access points (APs). Therefore, we examined each models' 
accuracy indoors and outdoors separately based on the test set labels. According to the result, GPS 
positioning performs much better outdoors than indoors, and the outdoor accuracy is close to or 
even slightly higher than that of Wi-Fi positioning in the same environment, which is consistent 
with the results of the prior study. On the contrary, Wi-Fi positioning is much more stable, with 
slightly better performance indoors than outdoors, which is reasonable considering that Shibuya, 
where our study area is located, is one of the busiest commercial districts in the world with a high 
density of AP distribution. 
Figure 5 shows the relationship between the prediction accuracy and the number of detected 

access points (APs) for each link. The links with low prediction accuracy are mainly distributed in 
the interval where the number of detected APs is less than 200, both indoor and outdoor, regardless 
of which model. In other words, Wi-Fi positioning can be vulnerable without a reasonable and 
dense AP distribution. 
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FIGURE 5 The relationship between AP observations and link accuracy 

Therefore, we apply the link-based DF strategy shown in section 3.3 for further optimizaｭ
tion. Since the GPS positioning is not reliable indoors in this case, we take the result of classifiers 
trained on Wi-Fi data as the initial result, take a time interval 凶＝ 1Oseconds, and replace the 
unconnected outdoor links with the ones with more reasonable position from GPS positioning. As 
shown in Table 2, the fusion position model has a better performance than the ones taking GPS or 
W-Fi data only. In addition, fusion location using multi-sensors is more practical in a complex enｭ
vironment, for that single source of data can be shielded by buildings (GPS data) or lose accuracy 
in spaces with few AP around (Wi-Fi data). 

5.3 Setting of variables and estimation result 
In this case study, we define the deterministic component of instantaneous utility function as folｭ
lows: 

V(aj+l I aj) = e区length+ 8虹sidewalk+ 8丸hop + 84Xindoor + 8丸tair+ a紅escalator (6) 
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TABLE 2 Prediction result of observation models 

Indoor 
GPS Outdoor 
Overall 
Indoor 

Wi-Fi Outdoor 
Overall 

Fusion Data 

RF 

Accuracy CV 

83.23% 

96.46% 86.92% 
89.37% 

97.06% 

96.40% 91.02% 
96.83% 

96.88% 

NN 
Accuracy CV 

96.33% 

95.80% 89.03% 
96.46% 

XGBoost 
Accuracy CV 

83.87% 

95.35% 86.51% 

88.31% 

96.34% 

95.12% 88.85% 

95.96% 

96.21% 

LightGBM 
Accuracy CV 

83.71% 

96.66% 87.86% 

89.12% 

96.96% 

96.32% 91.03% 
96.82% 

96.97% 
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The explanatory variables including link length, sidewalk width, shop distribution rate, indoor 

dummy, stair dummy and escalator dummy are defined in Table 3. 

Variable 

Link Length X/ength 

Sidewalk width Xsidewalk 
Shop rate Xshop 

Indoor dummy Xindoor 
Stair dummy Xstair 

Escalator dummy Xescalator 

TABLE 3 Variable Summary 

Explanation 

Unit: x lOmetre 
Unit: metre 
The shop rate is divided into 5 grades from low to high: 0,1,2,3,4 
1 for indoor link, 0 for outdoor link 
1 for link having stair on it 
1 for link having escalator on it, otherwise 0 

Referring to the time limit in the free walk experiment, we set time constraint T = 20. 
We use the results from the Fused data observation models using RF, XGBoost and LightGBM 

algorithms to do parameter estimation on a combination of the above six variables 8 =（釘…， 0砂
Table 4 is the estimation result. 

The parameter value for sidewalk width takes a positive number, which reveals that pedesｭ

trians tend to walk on streets with wide sidewalks. The negative parameter of the indoor dummy 

reveals that pedestrians express resistance to the indoor environment while walking. On the other 

hand, unlike the intuitive judgment that pedestrians tend to choose links that takes less time, the 

length of links significantly influences pedestrians'route choice. That might be because particiｭ

pants experienced in walking at Shibuya Station make a global decision, focusing on future utility 

rather than instantaneous utility. To verify this hypothesis, an experiment involving participants 

lacking Shibuya station knowledge needs to be conducted. 

Moreover, the parameter values of shop rate are all positive, and at 1 % significance level 

on observation data processed by XGBoost and LightGBM, which means shops on the links are 

attractive for the participants and can rise their dwell time. In general, further research is necessary 

for understanding travelers'route choice in 3D pedestrian network. 
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TABLE 4 Estimation Result of RL model 

RF XGBoost LightGBM 
parameter t-value parameter t-value parameter t-value 

X/ength 0.201 6.28** 0.192 4.81 ** 0.143 5.76** 

Xsidewalk 0.046 1.35 0.175 4.79** 0.151 3.94** 

Xshop 0.070 1.14 0.325 6.50** 0.297 4.92** 

Xintfoor -0.296 -1.70 -0.806 -5.04** -1.011 -5.80** 

Xstair -0.151 -0.16 0.394 0.37 0.381 0.95 

Xescalator -1.132 -0.92 -1.327 -0.64 -1.010 -0.94 

No. of samples 400 400 400 
Initial cross-entropy -97.58 -376.95 -293.07 
Final cross-entropy -69.97 -224.15 -161.87 

Cross-entropy ratio 0.28 0.41 0.44 

** for 1 % significant 

6. CONCLUSION 
As the complexity of urban networks is increasing dramatically in Japan, Europe, the United States, 
and China, research into pedestrian dynamics has received widespread attention. Studying the 
route choice behavior of pedestrians is expected to inform the design of urban pedestrian networks 
incorporating buildings and pedestrian infrastructure, as well as the implementation of traffic manｭ
agement methods. We proposed a model framework to evaluate and optimally design indoor and 
outdoor space as an integrated space based on a behavioral perspective. 
We proposed a model of pedestrian route choice on a 3D urban network using data colｭ

lected from GPS and Wi-Fi traces. First, we built a 3D observation model using several machine 
learning methods and attempted fused positioning based on GPS and Wi-Fi data. Then we adjust 
the standard RL model and replace the likelihood function with the cross-entropy function to fit 
probabilistic link sets. Finally, we apply the proposed model to Shibuya Station in Tokyo, Japan. 
The model exhibited an excellent performance on location identification. We also did parameter 
estimations on several variables on a CSN, proving that the model owns a good fitness on observaｭ
tion data. 
Since Wi-Fi and Bluetooth MAC addresses are refreshed every few tens of minutes, the 

3D path choice model can be developed into a sequential model, while some user services provide 
connection information to Wi-Fi and 5G access points in return. The development of multi-sensor 
pedestrian models in 3D space and the accumulation of data for the optimal design and control 
of architectural and exterior spaces will continue to advance, and approaches such as using multiｭ
dimensional features such as Twitter and Instagram as explanatory variables may be considered. 
In this study, we used Wi-Fi data as input variables for machine learning in the case of indoor 
spaces. Still, our method can also be extended to image data, which we believe has the potential to 
improve accuracy. On the other hand, some of the spatial design variables did not show significant 
values. These results may be due to the heterogeneity of behaviors, and the introduction of latent 
class models may be an issue. Some nonintuitive decision prone of pedestrians on route choice 
are discovered as well. To better understand pedestrians'route choice behavior, further study on 
discount factor and a supplementary Experiment on visitor group (the opposite of the commuter, 
lacking and are more likely to make a short-sighted decision on route choice) should be conducted. 
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